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Abstract A  novel  resolved  CFDEM  method,  which  is  a  combination  of  the

computational fluid dynamics and the discrete element method, is proposed for the

simulation of the strong coupling between the fluid and the discontinuous solids with

large  movement. The  fluid  flow governed  by  the  full  Navier-Stokes  equations  is

simulated using fixed grids based on the Eulerian framework, whereas the motion of

the  discontinuous  solids  is  modeled  by  the  discrete  element  method  using  the

Lagrangian description. The key challenge, namely the representation of the moving

interfaces between the fluid and the solids in different frameworks, is handled by the

immersed  boundary  method.  Meanwhile,  the  governing  equations  of  the  coupled

system are solved by the partitioned method in an iterative way to achieve a strong

coupling effect. The breakthrough of the proposed resolved CFDEM method lies in

the calculation of the fluid flow in fixed grids with high resolution, along with an

accurate simulation of the interaction between the fluid and the discontinuous solids

with arbitrary shapes and large movement. The reliability and the accuracy of the new

method are validated by calculating several well-known benchmark examples. Good

agreements are achieved between the present and the known results.

Keywords:  fluid-solid  interaction,  discontinuous  solids,  discrete  element  method,

immersed boundary method, partitioned method
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Abbreviations

FSI Fluid-solid interaction
FSI-C FSI problems between the fluid and the continuous solids
FSI-D FSI problems between the fluid and the discontinuous solids
ALE Arbitrary Lagrangian-Eulerian
FDM Fictitious domain method
DPM Discrete phase method
CFD Computational fluid dynamics
DEM Discrete element method
CFDEM Combination of the CFD and the DEM
BCM Body conformed method
IBM Immersed boundary method
RCFDEM Resolved CFDEM method
IB Immersed boundary
VIV Vortex-induced vibration
DKT Drafting-kissing-tumbling

Nomenclature

CV Velocity at the centroid of the solid C

U Fluid velocity at the centroid of the solid C

DF
Interaction force in the unresolved CFDEM method

DC
Drag coefficient

 Fluid density

pd
Diameter of the particle

 Void fraction
 Parameter associated with the Reynolds number of the particle
m Mass of the solid body
t Time
 Translational displacement

eF
External force

cF
Contact force

fF
Force applied to the solids by the fluid

c Damping coefficient
IM Moment of inertia tensor
 Angular displacement
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M Total torques

cnF
Normal contact force

ctF
Tangential contact force

pk
Penalty parameter

c Contact body

t Target body

overlappingS
Boundary of the overlapping domain of c  and t

n Outward unit vector of overlappingS

c Potential function for the contact body

t Potential function for the target body

A Area of the triangle

1 2 3,  ,  A A A
Area of each sub-triangle

kt Tangential stiffness coefficient
Δ t Increment of the tangential displacement

R Transfer matrix

ctF
Transferred tangential contact force

 Maximum static frictional angle

u Velocity of the fluid field
p Pressure of the fluid field

bf
Body force

 Viscous stress tensor
 Dynamic viscosity
f Extra body force

1nV Desired velocity at the immersed boundary point
1nU Interpolated velocity at the immersed boundary point

I Interpolation function
D Distribution function

  x Physical quantity at the grid node x
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 Φ iX Physical quantity at the immersed boundary point iX

iS Discrete area of iX

 Discrete delta function

bg
Collection of grid nodes on both sides of the immersed boundary

IBPN
Number of the immersed boundary points

*u Intermediate velocity increment
**u Correction of the velocity increment

*,Ku Intermediate velocity
 Tolerance


A kind of norms

fF
Force acted on the solids by the fluid

sF
Force acted on the fluid by the solids

sS
Solid boundary

outS
Boundary of the calculated domain

Ω Domain bounded by sS  and outS

Ω Domain inside sS

I Unit tensor
Ω Sum of Ω  and Ω

Re Reynolds number

U Far-field velocity

D Cylinder diameter

LC
Lift coefficient

St Strouhal number

reqf
Vortex shedding frequency

DF
Drag force

LF
Lift force

*U Reduced velocity
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Nf
Natural vibration frequency

k Spring stiffness coefficient
*m Mass ratio

 Damping ratio

xD
Transverse distance

yD
Longitudinal distance

rD
Straightt-line distance
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1 Introduction

Fluid-solid  interaction (FSI) problems are encountered in  various  engineering

fields,  including  constructional  engineering  [1],  renewable  engineering  [2],

biomedical engineering [3] and others. The FSI effects become significant when the

mutual dependence between the influence and the response increases [4]. Considering

the extensive existence and the noticeable influence of FSI effects, robust numerical

FSI methods are in high demand.

Even though diverse criteria exist in dividing the FSI problems,  FSI problems

can be classified into two categories according to the continuity of the solid, (i) FSI

problems between the fluid and the continuous solids (FSI-C) [5-7], (ii) FSI problems

between  the  fluid  and  the  discontinuous  solids  (FSI-D)  [8-10].  The  simulation

methods are relatively mature for FSI-C problems with small motion of the solids

[11]. Problems with large movement of the solids, though challenging, can be solved

by various  approaches,  including  the arbitrary Lagrangian-Eulerian (ALE) method

[12,13], the overset mesh method [14], the fictitious domain method (FDM) [15,16]

and etc.

However,  it poses a great challenge to simulate the FSI-D problems, especially

when arbitrary  large  movement  of  the  discontinuous  solids  is  considered  [17,18].

Since all the discontinuous solid bodies are often immersed in the fluid, the surfaces

of the solids, which are the fluid-solid interfaces, compose the boundaries of the fluid

domain, as shown in Figure 1. The large movement of the solids leads to the drastic

and arbitrary change of the fluid domain. Hence, the methods used to solve the FSI-C

problems are not desirable or manageable. The application of the ALE method often

leads  to  the  severe  distortion  of  the  mesh when the  movement  of  the  fluid-solid

interfaces is sudden and significant. The overset mesh method can deal with the large

movement of the solids, while each sub-grid, which is covered by a solid body, is not

allowed to interact with other sub-grids. Otherwise, the overlap and the interaction
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between sub-grids make it difficult to implement this approach. Hence, the overset

mesh method is restricted to the modelling of the interaction between the fluid and

finite solid bodies without impact, for example, the sedimentation of a small number

of particles in a channel [19] and the interaction between the propeller and the fluid

[20].

Figure  1 Sketch  of  the  interaction  between  the  fluid  and  the  solids  with  large

movement

Considering the complexity in simulating the moving solid boundaries, several

Euler-Euler  multi-phase  models  [21-23] have  been  proposed  to  avoid  the  direct

description of the moving interfaces between fluid and solids. In these approaches, the

dispersed solid bodies are treated as a continuum phase rather than being followed

individually. A typical technique is modelling the solid phase with a non-Newtonian

constitutive model. On this basis, the moving interfaces among different phases are

treated as internal ones and captured by the level set method  [24] or the volume of

fluid  method  [25] implicitly.  However,  these  methods  are  limited  to  model  the

problems which present fluidization characteristics, including the fluidized solids with

high moisture and the debris flow, and the discontinuity and individual motion of the

solids cannot be considered in the Euler-Euler multi-phase models. To account for the

discontinuity property of the solids and track the trajectory, the discrete phase method

(DPM)  [26], which belongs to the Euler-Lagrange  multi-phase models  [27,28], has

been proposed.  Nevertheless,  the  interaction  among the  solids  is  neglected  in  the

DPM and this model is only appropriate for dilute flows, where the dispersed second
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phase occupies a low volume fraction, for example, the interaction between the gas

and particles in a swirl  burner [29]. The DPM cannot be employed if the volume

fraction of  the second phase is  larger  than 10%, such as  in  the simulation of the

fluidized beds [30]. 

For the simulation of FSI-D problems with large movement of the solids, the

optimal  choice  is  combining  the  computational  fluid  dynamics  (CFD)  with  the

discontinuous  methods,  for  instance,  the  discrete  element  method  (DEM)  [31].  A

significant attempt is the establishment of the CFD-DEM (CFDEM) methods [32-35],

in which the simulation of the coupling between the fluid and the discontinuous solids

with  arbitrary  large  movement  is  accomplished.  However,  the  FSI  force  in  the

CFDEM methods is simplified as the drag force determined by the void fraction and

the  common empirical  formulas  were  provided  by  Ergun  [36] or  Di  Felice  [37].

Essentially,  the  CFDEM methods,  which can cope with the interaction among the

solids, can be regarded as an improvement of the DPM. Nevertheless, the boundary

conditions between the fluid and the solids are not set up accurately. The impact of

each particle on the fluid is calculated independently by an empirical equation in the

CFDEM methods. The influence of the wake flow on particles cannot be considered

and  the  fluid  field  surrounding  the  particles  is  not  precisely  solved.  Besides,  the

existing  empirical  equations  are  limited  to  the  circular  particles,  rather  than  solid

bodies with arbitrary shapes. 

The  unresolved  CFDEM  methods  are  the  preferable  choices  when  only  the

macroscopic behavior of the fluid and the solids  is  of interest  [38].  However,  the

unresolved methods are incapable of simulating the FSI effect precisely. Therefore, it

is  important  to  develop  an  accurate  simulation  methodology  for  the  kinetic

characteristics  of  the solid  bodies and the  fluid  by proposing a  resolved CFDEM

method. The key problem in establishing the resolved method is the description of the

moving  interfaces  considering  the  arbitrariness  of  the  body  movement.  Since  the

discontinuous  solids  are  immersed  in  the  fluid,  the  large  movement  of  the  solids

makes the regeneration of the mesh in the body conformed method (BCM) complex
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and difficult.  To avoid the difficulty in regenerating the fluid mesh, an alternative

choice is calculating the fluid flow and describing the moving fluid-solid interfaces

based on the fixed grids in the Eulerian framework. The immersed boundary method

(IBM) proposed creatively by Peskin  [39] was used to model the blood flow in the

heart with fixed mesh initially. Afterwards, the IBM has been extensively applied to

solve the complicated solid boundaries immersed in the structured Eulerian grids for

the fluid and present the force exerted to the fluid by the solids [40]. The innovation

of the IBM is modelling the solid boundaries by adding a force term to the right-hand

side of the Navier-Stokes momentum equation, which avoids the regeneration of the

grids and decreases the calculation cost using the fixed mesh. The moving interfaces

are  represented  by  the  immersed  boundary  points  which  are  located  on  the  solid

boundaries. 

In this paper, a resolved CFDEM method (RCFDEM) using the IBM is proposed

to simulate the FSI phenomenon between the fluid and the discontinuous solids with

large  movement.  In  the  RCFDEM  method,  the  incompressible  Navier-Stokes

equations  are  applied  as  the  governing  equations  for  the  fluid  flow and the  flow

variables are solved according to  the projection method based on the fixed mesh,

while the DEM is used to simulate the movement of the solids. The IBM is applied to

present the moving interfaces between the fluid and the solid bodies and calculate the

FSI forces. The partitioned method is selected to solve the coupled system. Thereafter,

several iterations are carried out to establish a strong coupling between the fluid and

the solids, i.e., the stress balance and the movement compatibility. Specifically, the

velocities of the solids are used as the boundary condition for the calculation of the

fluid phase. Then, the achieved FSI force is employed as the boundary condition for

the calculation of solids. A loop is adopted till the relevant convergence conditions are

satisfied.  In  the  above  partitioned  way,  the  convergence  and  the  stability  of  the

proposed RCFDEM method is improved significantly.

This  paper  is  arranged  as  follows.  The  methodology  is  clarified  in  detail  in

Section  2,  including  the  governing  equations  for  solid  bodies  and  the  fluid,  the
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calculation of the interaction force and the iterative scheme for the coupled system. In

Section  3,  the  accuracy  of  the  proposed  RCFDEM  method  is  verified  by  four

benchmark tests and then this method is employed to simulate the sedimentation of

rigid bodies with arbitrary shapes. At the end of this paper, the conclusions are given.

2 Methodology

2.1 Overall view of the proposed RCFDEM method against the

unresolved CDFEM approaches

In  the  FSI-D  problems,  the  system for  the  fluid  and  the  solids  are  coupled

accurately by imposing adequate boundary conditions to the solid surfaces, i.e., the

fluid-solid  interfaces.  Hence,  the  description  of  the  solid  boundaries  with  large

movement  plays  an  important  role  in  numerical  simulations.  In  the  unresolved

CFDEM method, an empirical equation has to be employed to estimate the fluid-solid

interaction force and the sketch used to obtain the force is presented in Figure 2. The

centroid of the solid is defined as C and the velocity is CV . The fluid velocity at Point

C is marked as  U which can be interpolated by the surrounding mesh nodes 1 to 4.

The interaction force DF  is then obtained according to the difference between CV  and

U. For example, the empirical equation proposed by Di Felice [37] is

 2 11

8D D p C CC d     F U V U V
 

11\*

MERG

EFOR

MAT ()

where  DC  is  the  coefficient  of  the  drag  force,    is  the  fluid  density,  pd
 is  the

diameter of the particle,   is the void fraction,   is a parameter associated with the

Reynolds number of the particle.  The explicit  solution of the moving interfaces is
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avoided in  the unresolved method,  while  several  inherent  drawbacks still  exist  as

follows.

(1)  The  empirical  equation  is  limited  to  the  circular  particles.  To  the  best

knowledge of the authors,  the existing empirical formulations are restricted to the

circular solid bodies. In practical FSI-D problems, the shape of the solids is arbitrary.

(2) The influence of the solids on the fluid cannot be reflected accurately. The

empirical equations are proposed to calculate the interaction force between the fluid

and only one circular particle. Hence, the effects of each solid body on the fluid is

considered separately based on Eq. Error: Reference source not found. However, the

sum of the drag forces cannot represent the FSI effect precisely since the influences of

different particles to the fluid are interrelated.

(3)  The  fluid-solid  interfaces  are  not  represented.  The  FSI  forces  calculated

according to Eq. Error: Reference source not found are simplified to the centers of the

corresponding  particles.  The  fluid-solid  interfaces,  i.e.,  the  solid  surfaces,  are  not

represented  in  the  unresolved  CFDEM  method.  Hence,  the  fluid  cannot  feel  the

existence of the particles and the resolution of the fluid is low.

Figure 2 Sketch of the unresolved CFDEM method

Compared with the unresolved CFDEM method, the proposed RCFDEM method
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calculates the fluid flow with high resolution and describes the fluid-solid interfaces

accurately. The fluid and the solids are discretized in the Eulerian and Lagrangian

framework respectively, and the solids are immersed in the fixed fluid mesh, as shown

in Figure  3.  To  describe  the  solid  with  large  movement  and  combine  different

frameworks,  the  IBM is  employed  in  the  resolved  method  and  several  immersed

boundary points are allocated on each solid boundary. The velocity and the position of

each  immersed boundary  point  are  determined  by the  discontinuous  solid  bodies.

Extra body forces are acted on the nodes of the fluid mesh to satisfy the  boundary

conditions on the immersed boundary points and the kinematics of the fluid flow can

be calculated.  Subsequently,  the reactive forces  are  applied to the solids.  For this

coupled system, an iteration should be pursued till a convergence is achieved. The

fluid-solid  coupled  interaction  can  be  manifested  precisely  when  the  boundary

conditions on the immersed boundary points are satisfied.

Figure 3 Sketch of the proposed RCFDEM method

The  main  characteristics  of  the  RCFDEM method  are  as  follows.  The  solid

motion is described by the DEM, while the fluid flow is governed by the NSEs. The

moving  interfaces  between the  fluid  and  the  solids  and the  interaction  forces  are

simulated  by  the  IBM.  In  order  to  achieve  the  strong  coupling  between  the  two

systems, the governing equations are solved by the partitioned method in an iterative
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way.  In  the  following  part  of  this  section,  the  implementation  of  the  RCFDEM

method is illustrated in detail.

2.2 Governing equations for the solids 

The movement of solid bodies is governed by the Newton’s second law which

takes the influence of the fluid into consideration.  The governing equation can be

written as

2

2

d
m

dt



F

22\*

MERG

EFOR

MAT ()

2

2M

d
I

dt



M

33\*

MERG

EFOR

MAT ()

where m is the mass of the solid body, t represents time,   represents the translational

displacement, F satisfies 
e c f

d
c

dt
   


F F F F

, in which eF
 is the external force,

cF  is the contact force, fF
 stands for the force applied to the solids by the fluid and c

is  the  damping  coefficient.  IM is  the  moment  of  inertia  tensor,    is  the  angular

displacement and M is the total torques, including the contributions of the external

force, the fluid-solid interaction force and etc.

The term cF
 is composed of the normal contact force cnF

 and the tangential one

ctF . The normal contact force cnF  is calculated as follows

 
overlapping

cn p c tS
k dS  F n

44\*

MERG

EFOR

MAT ()
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where pk
 is the penalty parameter, c  is the contact body, t  is the target body, n is

the outward unit vector of overlappingS
 which is the boundary of the overlapping domain

of c  and t , c  and t  are the potential functions for the contact and target bodies

according to  the definition provided by Munjiza  [41]. As shown in  Figure  4,  the

potential  function  at  an  arbitrary  point  P  in  a  triangle  is  defined  as

  31 2 33 3
min , ,

 
  

 

AA A
P

A A A ,  where A represents the area of the triangle,  1 2 3,  ,  A A A

represent the area of each sub-triangle.

Figure 4 Sketch of the definition of the potential function

To  calculate  the  tangential  contact  force  ctF ,  the  force-displacement  law  is

applied. The detailed procedure is

Step 1: calculate the increment of the tangential contact force Δ i
ctF

Δ Δi i
ct t tk F 

55\*

MERG

EFOR

MAT ()

where kt is the tangential stiffness coefficient,  Δ i
t  is the increment of the tangential

displacement at the ith time step.
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Step 2: transfer the direction of the tangential contact force in the previous time

step 
1i

ct
F  to the direction of 

i
ctF  equivalently using the transfer matrix R

1 1i i
ct ct
 F RF

66\*

MERG

EFOR

MAT ()

Step 3: calculate the current tangential contact force 
i

ctF

1i i i
ct ct ct

  F F F

77\*

MERG

EFOR

MAT ()

 max , tani i i
ct ct cn F F F

88\*

MERG

EFOR

MAT ()

where   is the maximum static frictional angle.

2.3 Governing equations for the fluid

The fluid flow is governed by the full Navier-Stokes equations. Since the fluid-

solid interaction should be considered, the direct-forcing IBM [42] is employed and

an additional term is added to the right-hand side of the momentum equation. The

governing equations including the extra body force for the incompressible flow are

written as

0 u

99\*

MERG

EFOR

MAT ()

 
1 1

bp
t  


      



u
uu f f

1010\*

MERG

EFOR
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MAT ()

where u represents the velocity, t is time, p is the pressure,   is the density, bf  is the

body force,   is the viscous stress tensor which satisfies  T    u u
,   is the

dynamic viscosity, f  is an extra body force per mass unit exerted on the fixed grid.

The extra body force term can be obtained according to the boundary condition of the

direct-forcing IBM, i.e.,  the desired velocity at the immersed boundary point  
1nV

equals to the interpolated velocity at the same point 
1nU .

To  calculate  the  term  f in  Eq.  Error:  Reference  source  not  found,  the

interpolation function I  and the distribution function D  are defined. The function

I  is used to interpolate the physical quantities at grid nodes to immersed boundary

points and the function D  is applied to distribute the physical quantities at immersed

boundary points to the grid nodes. The application of the above two functions are as

follows

       Φ ,
b

i i i
x g

  


  X X x x XI

1111\*

MERG

EFOR

MAT ()

       
IBP

1

Φ, Φ
N

i i i
i

S 


   x x X x XD

1212\*

MERG

EFOR

MAT ()

where   x
 is the physical quantity, including u , p , f , at the grid node x ,  Φ iX

is the physical quantity at the immersed boundary point iX , iS  is the discrete area

of iX ,   is the discrete delta function, bg  is the collection of the grid nodes on both

sides of the immersed boundary, IBPN  is the number of the immersed boundary points.

bg  and IBPN  are determined according to the dependence domain of the functions I

and D , respectively.

In consideration of the coupling between u  and p , the governing equations for
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the  fluid  are  solved  based  on  the  Characteristic-based  Split  scheme  [43].  The

temporal-discretized formulation of Eq. Error: Reference source not found is 

1 1Δ Δn n n t   u K R f

1313\*

MERG

EFOR

MAT ()

where the superscripts stand for the time step and the expressions for 
nK  and 

1nR

are as follow

    
2Δ

Δ
2

n t
t



 
       

 

τ
K uu u uu

1414\*

MERG

EFOR

MAT ()

2
1 1 11 Δ 1

Δ
2

n n n
b b

t
t p p

 

     
         

   
R f u f

1515\*

MERG

EFOR

MAT ()

The increment of the velocity in the nth time step can be spilt into two parts,

including the intermediate velocity increment 
*u  and the correction of the velocity

increment 
**u  which are presented as

* 1n n t   u K f

1616\*

MERG

EFOR

MAT ()

** 1n u R

1717\*

MERG

EFOR

MAT ()

Substituting 
*u  and 

**u  to the boundary condition 
1 1n n V = U ,

   1 1 1 1 1Δn n n n n n n t        V = U u u K R fI I 1818\*

MERG

18



EFOR

MAT ()

The above equation can be rewritten as

   1 1 1Δn n n n nt     f V u K RI I

1919\*

MERG

EFOR

MAT ()

Subsequently,  the  term   1Δn tfI
,  which  represents  the  body  force  on  the

immersed boundary (IB) points, is distributed to the grid node

     1 1 1Δn n n n nt     f V u K RD I D I

2020\*

MERG

EFOR

MAT ()

Then, the formulation of the term 
1nf  can be written as

 1 1 1 Δn n n n nt      
 

f V u K RD I

2121\*

MERG

EFOR

MAT ()

It can be observed from Eq.  Error: Reference source not found that the extra

body force f  is coupled with the pressure and an outer loop is needed to solve the

variables. The detailed calculation is carried out in the following three steps.

Step 1: predict the intermediate velocity  
*,Ku  without considering the pressure

and the extra body force.

*,K n nu = u K

2222\*

MERG

EFOR

MAT

()
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Step 2: calculate the pressure increment 
,Δ n kp  and the extra body force 

1,n kf  in

an iterative way.

Let 
1,0n np p   and 

1,0 0n f , 1k 

Outer loop begins

(2-1) calculate  the extra  body force  
1,n kf  according to  Eq.  Error:  Reference

source not found.

It is not guaranteed that all the immersed boundary points coincide with the grid

nodes.  Hence,  an  inner  loop  should  be  carried  out  [40] in  this  step  to  meet  the

boundary condition 
1 1n n V = U .

Inner loop begins

Let  
1, ,0 1, 1n k n k  f f ,  1i   and  calculate  

1, ,n k if  according  to  Eq.  Error:

Reference source not found

 1, , 1, , 1 1 1 1, , 1n k i n k i n n n n n k it t t              
 

f f V u K R + fD I

2323\*

MERG

EFOR

MAT

()

If  
 1 1 1, , 1n n n n n k i t      V u K R + fI

 is smaller than a given  tolerance   ,

where  


 represents a kind of norms,  break the inner loop. Otherwise, let  1i i  .

Generally, it is enough to repeat the inner cycle 5 to 10 times based on the experiences

of the authors.

Inner loop ends

1, 1, ,n k n k i f f
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(2-2) update the intermediate velocity 
*, 1,n ku .

*, 1, *, 1, Δn k K n k t  u u f

242

4\*

ME

RG

EF

OR

MA

T ()

(2-3)  update  the  intermediate  pressure  
1,n kp 

 according  to  the  continuity

equation.

 *, 1, 1, 0n k n k   u R

252

5\*

ME

RG

EFO

RM

AT

()

(2-4) check the convergence.

The convergence is  checked on the basis  of  Eq.  Error:  Reference source not

found. If the condition of convergence is met, break the outer loop. Otherwise, the

1k  th iteration of the nth step should be done subsequently.

   1, 1, 1n n n k n n n k        u K R u K RI I 2626\*

MERG

EFOR

MAT
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()

where   is a given tolerance.

Outer loop ends.

Step 3: update the pressure 
1np 

 and correct the velocity 
1nu .

1 ,n n n kp p p  

2727\*

MERG

EFOR

MAT

()

1 * 1,n n k u = u R

2828\*

MERG

EFOR

MAT

()

2.4 Interaction force between the fluid and the solids

The calculation of the extra force f  is illustrated in the previous section, while

the formulation of the FSI force is not derived. It should be noted that the interaction

forces between the fluid and the solids, including the force acted on the solids by the

fluid fF
 and the reactive force sF , are different with the extra body force. fF

 and sF

are applied on immersed boundary points while f  is imposed on the grid node in the

Eulerian framework.

Figure 5 Sketch of the calculation domain. (a) body conformed method; (b) immersed
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boundary method.  sS  is the solid boundary,  outS  is the boundary of the calculated

domain, Ω  is the domain bounded by sS  and outS , Ω  is the domain inside sS

In the framework of the BCM shown in Figure 5(a), the force exerted to the fluid

by the solids sF  can be written as an integration

s
s S

dS F n

2929\*

MERG

EFOR

MAT ()

where n is the outward normal vector of sS , 
 

1 Tp



 

    I u u
, I is the unit

tensor.

In  the  BCM,  the  equilibrium  of  the  momentum  should  be  satisfied.  The

momentum equation, in which the extra body force term is not included, is integrated

over the domain

    0
out s

b S S
d dS dS

t

 
         

 
  

u
f n uu n uu 

3030\*

MERG

EFOR

MAT ()

Since  sS  is  the  solid  boundary,  the  condition  0 n uu  should  be  met.

Therefore, the third term of Eq. Error: Reference source not found can be simplified

further. Substituting Eq. Error: Reference source not found into Eq. Error: Reference

source not found, the term sF  can be written as

 
out

s b S
d dS

t

 
     

 
  

u
F f n uu

3131\*

MERG

EFOR

MAT ()

In the IBM, the whole domain  Ω,  which is  the sum of  Ω  and the domain  Ω

occupied by the solids in the BCM, is filled with the fluid, shown in Figure 5(b). The

equilibrium of the momentum should be satisfied and Eq. Error: Reference source not

found is substituted into the integrated result of Eq. Error: Reference source not found
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s bd d
t  

 
     

 
 

u
F f f

3232\*
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EFOR

MAT ()

According to the Newton's third law, the force acted on the solids by the fluid fF

is calculated as

f s bd d
t  

 
     

 
 

u
F F f f

3333\*
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MAT ()

where the terms  
d

t





u

 and  bd


 f
 forces are exerted on the fluid inside the

immersed boundary, which represent the inertia force and the effect of the buoyancy,

respectively. 

2.5 Iterative scheme for the coupling system

To solve the coupled fluid-solid system and realize the strong coupling between

the fluid and the solids,  an iterative scheme should be carried out.  The governing

equations  of  the  fluid  are  discretized spatially  based  on  the  standard  Galerkin

procedure

 ( , ) , ,fp p  u RHS u 

3434\*

MERG

EFOR

MAT ()

According to the velocity Verlet algorithm  [44], the governing equation of the

solids is discretized as

   , , ,f s p  RHS F RHS u  

3535\*
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EFOR

MAT ()

Hence, the iterative scheme for the coupling system is 

24



 , , 1, 1( , ) , ,n k n k n n n k
fp p    u RHS u 

3636\*

MERG

EFOR

MAT ()

 , 1, 1,, ,n k n n k n k
s p  RHS u 

3737\*

MERG

EFOR

MAT ()

Supposing the calculation of the nth step has been finished, the kth iteration of the

1n th step is carried out.

Loop begins

Step 1: solve the equation of the fluid phase (Eq.  Error: Reference source not

found).

Let 
1,0n n   .

The right-hand scheme of Eq.  Error: Reference source not found is calculated

and  the  influence  of  the  solid  motion  on the  fluid  phase  is  considered.  Both  the

velocity and the pressure of the fluid field are updated as follows

1, ,n k n n k  u u u

3838\*

MERG

EFOR

MAT

()

1, ,n k n n kp p p  

3939\*

MERG

EFOR

MAT

()

Step 2: solve the equation of the solids (Eq. Error: Reference source not found).

The right-hand scheme of Eq.  Error: Reference source not found is calculated
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which reflects the influence of the fluid field, including the velocity and the pressure,

on  the  solids.  Then,  the  motion  of  the  solids  is  updated  according  to  Eq.  Error:

Reference source not found

1, ,n k n n k    

4040\*

MERG

EFOR

MAT

()

Step 3: check the convergence.

The convergence is  checked on the basis  of  Eq.  Error:  Reference source not

found. If the condition of convergence is met, break the loop.

, , 1n k n k
     

4141\*

MERG

EFOR

MAT

()

where   is u, p or  ,   is a small value for the corresponding variable  .

Step 4: carry out the 1k  th iteration of the 1n  th step.

Let 1k k   and repeat Step 1 to Step 3.

Loop ends

It should be noticed that the velocity 
1,n ku  and the pressure 

1,n kp 

 only depend

on 
nu , 

np  and 
1, 1n k  , instead of 

1, 1n k u  and 
1, 1n kp  

. On the contrary, the movement

of the solids 
1,n k  depends on 

n , 
1,n ku  and 

1,n kp 

, instead of 
1, 1n k  .
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3 Numerical cases

3.1 Flow past a static cylinder

As a benchmark case, the laminar flow past a static cylinder has been studied

widely in decades and it is simulated herein to demonstrate the validity of the IBM

and the ability of the proposed method in modelling the interaction between the fluid

and the fixed solid.

The flow is characterized according to the Reynolds number 
Re

U D




, where

  and   are the density and the dynamic viscosity of the fluid,   is the far-field

velocity and D  is the diameter of the cylinder. The size of the calculated domain is

60 40D D  and  the  centroid  of  the  cylinder  is  located  15D  away from the  inlet

boundary and 20D  away from the upper and the lower boundaries. According to the

suggestions of Persillon and Braza [45], the influence of boundary conditions can be

ignored when the width of the computational domain is not smaller than 22D  and the

distance between the centroid of the cylinder and the outflow boundary is larger than

34D  in the condition of Re 100 . Obviously, the above two conditions are met in the

current simulation, which means the calculated domain can be regarded as infinite and

the sensitivity of the results to the domain size can be eliminated.

The domain around the cylinder is discretized by fine rectangles with a size of D/

80 and the mesh is stretched in all four directions towards the boundaries. The whole

domain is discretized into 816×448 structural quadrilateral elements. Moreover, 753

immersed boundary points are allocated on the boundary of the cylinder and no less

than  one  immersed  boundary  point  should  be  located  in  each  element.  The  inlet

boundary is set as a Dirichlet boundary. The top and the bottom boundaries are in the

free-slip condition, along with a free outflow boundary.

The general parameters applied to prove the accuracy of the current test case

include the drag coefficient DC , the lift coefficient LC  and the Strouhal number St .

The formulations for the above three coefficients are
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where reqf
 is the vortex shedding frequency, DF  and LF  are the drag force and the lift

force.

The drag coefficient, lift coefficient and the Strouhal number for three different

Reynolds number calculated by the current method are listed in Table 1 and the results

are  compared  with  those  provided  in  previous  references.  Since  the  boundary

condition applied in the BCM is more accurate than those in the IBM, the results

given  by the  BCM can  be  treated  as  references  when the  results  of  the  physical

experiment are insufficient. It can be observed from Table 1 that the drag coefficient

DC  calculated by the IBM is slightly larger than that provided by the BCM. In the

IBM, the extra body force is posed on the grid nodes in a band with a certain width

around the fluid-solid boundary. Hence, the fluid-solid interface is immersed in the

band which enlarges the diameter of the cylinder and leads to the exaggeration of the

drag coefficient DC . However, the lift coefficient and the Strouhal number are hardly

affected by the diameter of the cylinder. As a result, the current results of these two

parameters  are  similar  with  those  in  different  references.  Meanwhile,  the  vortex

shedding frequency as expressed into the Strouhal number also agrees very well. [46]

[47] [40] [48]

Method
Re 100 Re 150 Re 200

CD CL St CD CL St CD CL St

BCM [46] 1.350±0.012 0.339 0.165 1.33±0.03 0.53 0.182 1.31±0.049 0.69 0.192

Experiment [47] - - 0.166 - - 0.183 - - 0.197

IBM [40] 1.402±0.010 0.349 0.167 1.385±0.027 0.538 0.186 1.391±0.047 0.699 0.198

IBM [48] 1.453±0.011 0.339 0.169 - - - - - -

IBM 

(current results)
1.399±0.010 0.339 0.168 1.404±0.028 0.527 0.184 1.438±0.048 0.684 0.196

Table 1. Drag coefficient, lift coefficient and Strouhal number provided by different

methods

The  instantaneous  streamlines  and  the  velocity  vectors  at  350t   in  the
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condition of Re 100  are plotted in Figure 6(a) and Figure 6(b), respectively. It can

be observed that the streamlines near the fluid-solid interface are conformed to the

boundary of the cylinder and no streamline penetrates the interface, which coincides

with the practical situation.  Meanwhile,  the velocity on the immersed boundary is

zero, showing that the boundary condition is satisfied on the fluid-solid interface.

Figure  6 Streamlines  and  velocity  vectors  at  350t   ( Re 100 ).  (a)  sketch  of

streamlines; (b) sketch of velocity vectors

In Figure 6(a), an external vortex can be observed, which is part of the Karman

vortex street. In Figure 7, the stable Karman vortex street at 350t   for Re 100  is

seen, showing a clear vortex shedding phenomenon in the wake of the cylinder as

expected.

Figure 7 Stable Karman vortex street at 350t   ( Re 100 )

3.2 Vortex-induced vibration of a cylinder

The accuracy of the interaction force calculation between the fluid and the fixed
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cylinder has been demonstrated in Section 3.1. However, the cylinder is static, which

means the movement of the solid and the interaction between the fluid and the moving

solid are not reflected. To demonstrate the ability of the RCFDEM method in solving

the  solid  movement  and the  FSI  effect,  the  vortex-induced vibration  (VIV) of  an

elastically mounted cylinder is calculated. The cylinder is treated as a mass-spring-

damper system and it can move in the horizontal and vertical directions, marked as

the  x direction and the  y direction respectively. The movement is governed by the

equations below

22

2 * * *

2 2 2
2 D

d X dX
X C

dt U dt U m

 




   
     

   

4343\*

MERG

EFOR

MAT ()

22

2 * * *

2 2 2
2 L

d Y dY
Y C

dt U dt U m

 




   
     

   

4444\*

MERG

EFOR

MAT ()

in which 
2 s

c

km
 

 is the damping ratio, c is the damping coefficient, 

* =
N

U
U

f D


 is

the reduced velocity, 

1

2N
s

k
f

m


 is the natural vibration frequency of the cylinder,

k is the spring stiffness coefficient,  D is the diameter of the cylinder,  X x D and

Y y D  are the non-dimensional displacements of the cylinder center, x and y are the

displacements in the corresponding directions, 
*

s fm m m
 is the mass ratio.

In this test case, the calculation domain and the boundary conditions in Section

3.1 are  adopted.  The  remaining  parameters  are  adopted  from reference  [49].  The
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Reynolds number is 200, the damping ratio   is 0.01, the reduced velocity 
*U  is 5.0

and the mass ratio  
*m  is  4  . According to the governing equations, the following

parameters can be derived. The ratio of the damping coefficient to the solid mass

sc m  is 125  and the spring constant k is 
24 25 . Three different mesh resolutions,

L1, L2 and L3 are applied to analyze the mesh size sensitivity. The corresponding

numbers  of  quadrangular  elements  are  204×112,  408×224  and  816×448,  and  the

element size surrounding the cylinder is D/20, D/40 and D/80, respectively.

Initially, the cylinder is fixed and the simulation in Section 3.1 is carried out until

a  stable  Karman vortex  street  is  formed.  Afterwards,  the  cylinder  is  released  and

vibrates translationally in the streamwise and transverse directions. The instantaneous

vorticity field in shown in  and the classic vortex shedding phenomenon, namely the

2S pattern, can be observed near the maximum upper position of the cylinder. The

vibration  frequency  of  the  cylinder  is  0.187,  which  matches  the  vortex  shedding

frequency exactly. Hence, the current simulation is in the synchronization regime of

vortex-induced vibration.

Figure 8 Vorticity field with L3 for a free oscillating cylinder

Considering the existence of the drag force, the vibration center of the cylinder is

drifted away from (0,0). In the calculation, the spring extension caused by the initial

drag  force  is  deducted  and  the  value  is  0.455D.  The  center  displacement  of  the
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cylinder  in  the condition of L3 is  given in  .  It  can be observed that  the cylinder

vibrates stably around (0.177D, 0). Hence, the actual oscillation center is (0.632D, 0)

and it is similar with (0.62D, 0) in reference  [50], where a spectral element method

was applied. In Figure 10, the stable trajectories of the cylinder center in the case of

L1, L2 and L3 are plotted and the present results are compared with the existing ones

[49,50]. All the centers of the figure-eight-type oscillation are shifted to (0,0) for the

convenience of comparison. Blackburn and Karniadakis [50] solved the VIV problem

with the spectral element method while an immersed boundary method is employed

by Yang et al.  [49] and also in our proposed method. Since the mesh size of L1 is

relatively coarse, the vortexes are not captured precisely, which leads to the reduction

of the displacement in both directions. The current results agree with the previous

ones satisfactorily for meshes of L2 and L3, which indicates that the mesh refinement

can improve the accuracy significantly.  Meanwhile,  the  accuracy of  our  proposed

method  in  dealing  with  the  FSI  problems  with  moving  objects  has  been  further

verified.

Figure 9 Centerline displacement phase plot
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Figure 10 Centerline displacement phase plot after the transient

3.3 Sedimentation of a circular particle 

In the previous VIV test  case,  the cylinder is bounded by two springs and it

vibrates in a confined area. To assess the ability of the proposed RCFDEM method in

dealing with the interaction between the fluid and the solid with large movement, the

sedimentation of a circular particle is simulated. 

The  parameters  are  same  with  those  given  by  Glowinski  etc.  [51].  The

calculation domain is 0.02 m×0.06 m. The coordinate of the bottom left corner is (-

0.01 m, 0). The diameter of the circular particle is 0.0025m. Initially, the center of the

particle is located at (0, 0.04m) and the flow velocity of the whole flow field is 0. The

density of the fluid is 1000kg/m3, the dynamic viscosity is  0.01kg / (m s)  and the

density of the rigid particle is 1250kg/m3. The particle is released from rest and is

driven by the gravity  to  fall.  The calculated  domain is  discretized  into 384×1152

structured quadrilateral elements and 452 immersed boundary points are placed on the

boundary of the particle. The element size surrounding the particle is  D/48. All the
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boundaries of the channel are modeled as non-slip solid walls.

Figure 11 Field of the velocity vector at different time

The velocity vector field and the position of the particle at four different time are

shown in . The particle is released from static state at 0t  , then moves freely under

the  effect  of  the  gravity.  As  time  progresses,  the  velocity  of  the  particle  keeps

increasing and two vortexes can be observed on the left and right side of the particle.

The  sedimentation  of  the  particle  disturbs  the  flow field  more  obviously  as  time

passes by. At 0.8 st  , the particle has already hit the bottom of the domain.
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Figure 12 Vertical displacement of the particle versus time

Figure 13 Vertical velocity of the particle versus time

The current calculated results are compared with those given by Glowinski etc.

[51] and Lv and Tang [52]. The vertical displacement and the vertical velocity of the

particle versus time are given in Figure 12 and Figure 13 respectively. It can be seen

from Figure 12 and Figure 13 that the results calculated by our proposed RCFDEM

method agree well with those in the reference [51] and the reference [52]. Figure 13

shows that the particle reaches a uniform velocity quickly after it is released. Then,

the particle keeps this velocity until it is deposited at the bottom at 0.73 st  . After

0.73 s, the vertical velocity of the particle changes to 0 in a short period. The results

calculated by the unresolved CFDEM model is also included in Figure 12 and Figure

13.  It  can be observed from  Figure  12 that  the general  tendencies  of  the particle

movement calculated by different methods are similar. The vertical velocity calculated

by the RCFDEM method decreases gradually as the particle approaches the bottom.

The  gradual  decreasing  velocity  is  induced  by  the  ground  effect  which  means  a

significant lift force is exerted to the particle. On the contrary, the vertical velocity

given by the  unresolved CFDEM method plummets  when the  particle  arrives  the

bottom. The divergence of the velocity evolution is caused by the different calculation

methods of the particle-fluid interaction force. In the unresolved CFDEM method, the

force  calculation  is  based  on the  velocity  difference  between the  particle  and the

averaged fluid field which is approximate to zero when the particle is sedimented to
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the bottom. As a result, the interaction force, which can decrease the vertical velocity

of the particle, does not exist in the unresolved CFDEM method. Subsequently, the

oscillation of the vertical velocity provided by the unresolved CFDEM method can be

seen in Figure 13 which is attributed to the viscous dissipation of the fluid field.

Even though the results calculated by the proposed RCFDEM method coincide

with  the  previous  numerical  outcomes  better  than  the  results  of  the  unresolved

method,  the  overall  performance  of  the  unresolved  method  in  modelling  the

interaction  between  the  fluid  and  a  single  particle  is  still  acceptable  in  terms  of

displacement.

3.4 Drafting-kissing-tumbling of two particles

Only  one  particle  was  included  in  the  previous  test  case  and  the  complex

interaction between solids were not dealt. Therefore, a benchmark test concerning the

sedimentation of two particles is calculated and the classic drafting-kissing-tumbling

phenomenon is  studied  in  this  subsection.  The difference  between the  unresolved

CFDEM method and the RCFDEM method is further illustrated.

The calculation  domain  is  0.02  m×0.08 m and coordinate  of  the  bottom left

corner is defined as (0, 0). Originally, the center coordinates of the lower particle P1

and the upper particle P2 are (0.01 m, 0.068 m) and (0.01 m, 0.072 m), respectively.

The diameter of the two circular particles is 0.002 m and the density is 
31010 kg / m .

The density of the fluid is 
31000 kg / m  and the dynamic viscosity is 0.001kg / (m s) .

The normal  and shear stiffness of the particles are set  as  
72 10  Pa.  The internal

friction angle and the damping ratio are 0. The particles are released from rest and are

driven  by  the  gravity  force.  The  calculated  domain  is  discretized  into  256×1024

structured quadrilateral elements and 241 immersed boundary points are spread on the

boundary of each particle. The element size surrounding the particles is D/25.6. The

boundaries in the longitudinal direction are modeled as non-slip solid walls, while the
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boundaries in the transverse direction are periodic.

The velocity vector of the whole domain calculated by the RCFDEM method is

shown  in  .  The  vorticities  around  the  particles  are  described  clearly  which

demonstrate that the proposed method is capable of simulating the flow surrounding

particles precisely.

Figure 14 Field of the velocity vector at different time

Meanwhile,  the  classic  drafting-kissing-tumbling  (DKT)  phenomenon  can  be

observed during the sedimentation process in  .  To describe the DKT phenomenon

quantitatively, the evolution of the relative position between P1 and P2 are drawn in ,

including the transverse and longitudinal distances between the particles, namely xD

and yD
, and the straight-line distance  rD  which can be calculated according to  xD

and yD
.

Initially,  P1  and  P2  move  individually  under  the  effect  of  the  gravity.  The

movement of these two particles leads to a change in the surrounding flow and a low-

pressure wake is formed between P1 and P2. Hence, the trailing particle P2 falls faster

than  the  leading  particle  P1  and  this  process  is  named  as  the  drafting  process.

Subsequently, P2 catches up with P1 at 1.2 st   and this moment is known as kissing.

The two particles keep a long body and sediment together till 2.4 st   which is called

tumbling. During this stage, the distance between P1 and P2 equals to zero. Finally,
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P1 and P2 separate as the stage of tumbling becomes unstable.

Figure 15 Distance between the particles versus time

To further prove the accuracy of the RCFDEM method, the coordinates of the

two particles versus time are plotted in   and the present results are compared with

those provided by Jafari et al. [53] and Wang et al. [54]. A great agreement is achieved

in both the transverse and the longitudinal coordinates with only small differences.

The transverse coordinates of the leading particle P1 suffers slight divergence during

the  separating  process.  This  phenomenon  is  attributed  to  the  different  numerical

methods in simulating the fluid phase and the fluid-particle interaction. In references

[53] and [54], the lattice Boltzmann method is coupled with different collision models

to simulate the sedimentation of the particles, while the behavior is predicted by the

new RCFDEM method. Meanwhile, the results calculated by the unresolved CFDEM

method are also included in  and the weakness of the unresolved CFDEM method is

revealed. Using the unresolved CFDEM method, P1 and P2 are sedimented without

the  DKT process.  This  inaccuracy  is  induced  to  the  limitation  of  the  empirical

formulation used to calculate the interaction force. The formulation is proposed for

only  one  circular  particle,  whereas  the  contact  between  the  two particles  and the

complexity  of  the  fluid  flow  triggered  by  the  solids  cannot  be  reflected  in  the

unsolved method.

This test case illustrates that the unresolved CFDEM method is unable to model
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the complex fluid field affected by particles,  while the newly proposed RCFDEM

method is robust in simulating the evolution of the fluid, the motion of particles and

the interaction between the fluid and the moving particles.

Figure  16 Coordinates  of  the particles  versus  time.  (a)  transverse coordinates;  (b)

longitudinal coordinates

3.5 Sedimentation of multiple solids

In this section, the number of the solids increases to 64 and the sedimentation

process is simulated. Initially, the ability of the RCFDEM method in coping with the

interaction between the fluid and a large number of rigid bodies is illustrated. All the

rigid  bodies  are  chosen as  circular  particles  and the packing process  is  compared

between  the  unresolved  method  and  the  RCFDEM  approach.  Thereafter,  the
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sedimentation of 64 square solids is calculated to demonstrate the feasibility of the

proposed method in modeling the interaction between the fluid and the solids with

arbitrary shapes. 

3.5.1 Sedimentation of circular rigid particles

The sedimentation of the 64 rigid particles with different diameters are calculated

by the unresolved CFDEM method and the proposed RCFDEM method separately.

The initial set up of this case is shown in . The 64 particles are placed in an enclosed

10m×10m box and they can be divided into two groups according to the diameter,

0.550 m and 0.275 m. The fluid density is 1000kg/m3 and the density ratio of particle

to fluid is 2.6. The dynamic viscosity of the fluid is 0.01kg / (m s) . The normal and

shear stiffness of the particles are set as 
84.8 10  Pa. All the boundaries are treated as

non-slip solid walls. Both the fluid and the particles are stationary at 0t   and the 64

rigid particles are driven by the gravity. 

Figure 17 Initial position of 64 rigid circular particles in an enclosure. The unit is m

In the unresolved method, the calculation domain is discretized into 144×144

structural square elements. The simulation results are depicted in several snapshots,
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shown in . It can be found from the close-up examination of (a) that almost all of the

velocity vectors are vertical, demonstrating that the size of particles does not have an

influence  on  the  velocity  field.  Actually,  the  particles  are  simplified  to  the

corresponding centers and the actual size is not reflected in the simulation. In other

words, the fluid flow cannot feel the existence of the solid bodies. The final deposit

status is shown in (e).

Figure 18 Position of circular particles calculated by the unresolved CFDEM method.
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(a) 1.00 st  ; (b) 2.02 st  ; (c) 3.02 st  ; (d) 4.02 st  ; (e) 10.00 st 

The same simulation is then carried out by employing the proposed RCFDEM

method.  The  calculation  domain  is  discretized  into  480×480  structural  square

elements and 584 and 1551 immersed boundary points are allocated on the surface of

each small and large particle respectively.

The instantaneous field of velocity vectors are given in  . The velocity vectors

around the particles are not as vertical as those provided by the unresolved method,

even in  the initial  stage shown in  (a).  Hence,  the actual  size is  considered in  the

current method. As particles settle due to the gravity force, the velocity field becomes

complicated and the particles are distributed in the enclosure irregularly ((b)). The

velocity vectors among the particles are enlarged in (c) and a vortex can be observed

clearly.  Initially,  the  eddies  are  created  due  to  the  movement  of  particles.

Subsequently,  the  vortexes  develop  and  drive  the  particles.  At  3.02 st   ((d)),  a

particle can be found in the top right corner of the enclosure and it continues to move

upwards as time goes on ((e)). This phenomenon is caused by the vortex surrounding

this particle, which is able to shoot the particle upwards. Since the particle diameter

influences  the settling velocity,  an obvious particle  screening phenomenon can be

seen during the sedimentation process. Most of the 64 particles sink to the bottom at

5.04 st   and  the  final  status  at  15.04 st   is  shown in  (f).  Due  to  the  precise

simulation  of  the  complex  fluid  field  and  the  FSI  effect,  the  duration  of  the

sedimentation  calculated  by  the  RCFDEM  method  is  longer  than  that  of  the

unresolved method.
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Figure 19 Position of circular particles calculated by the proposed RCFDEM method.

(a)  0.50 st  ;  (b)  1.01 st  ;  (c)  1.51 st  ;  (d) 3.02 st  ;  (e)  5.04 st  ;  (f)

15.04 st 

Compared with the unresolved method, the fluid field is resolved and the fluid

phase  surrounding  the  particles  is  simulated  precisely  in  the  RCFDEM  method.
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Moreover, the influence of the wake flow on particles can be considered. Hence, the

proposed method displays a strong accuracy advantage in simulating the interaction

between the fluid and the dense particles.

3.5.2 Sedimentation of square rigid bodies

The unresolved CFDEM method is limited to circular particles because of the

dependence of the interaction force calculation on empirical formulas. In this part, the

sedimentation of the 64 rigid square solids with different size is simulated with the

proposed RCFDEM method. The initial distribution of the 64 rigid square bodies is

given in . The length of the large squares and the small squares is 0.550 m and 0.275

m,  respectively.  The  calculation  domain,  the  boundary  condition  and the  material

properties of the fluid and the rigid bodies are the same with those in Section 3.5.1.

The whole domain is discretized into 480×480 structural square elements and 810 and

1376 immersed boundary points are allocated on the surface of each small and large

square respectively.

Figure 20 Initial position of 64 rigid square bodies in an enclosure. The unit is m

The velocity  vectors  at  different  times are  listed  in   and the body motion is

similar  with  that  of  the  circular  particle  calculated  by  the  proposed  method.  The

velocity vectors sidestep the rigid bodies during the sedimentation process ((a)-(f)),

instead of passing through the solid bodies as in  . The velocity vectors near the left
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and right walls are upward and the sedimentation of the solid bodies near the walls is

hindered, as shown in (b)-(c). The body movement lead to the complexification of the

fluid field in the enclosure and a large number of vortexes can be observed ((c)-(d)).

Then, the movement of solid bodies is influenced by the created vortexes. Most of the

squares reach the bottom at 8.85 st   as shown in (e). Afterwards, the disorder of the

fluid field decreases gradually since part of the squares stay static. The final status of

the sedimentation is given in (f).
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Figure  21 Instantaneous velocity vectors and the velocities of the rigid bodies. The

color of the rigid bodies indicates the value of the velocity from dark red for 2.2 m/s

to dark blue for 0 m/s. (a) 0.50 st  ; (b) 1.21 st  ; (c) 2.02 st  ; (d) 3.02 st  ; (e)

8.85 st  ; (f) 21.49 st 

In this simulation, the interaction between the fluid and the square bodies are

represented properly. It was shown that the proposed RCFDEM method can be used

to model the complicated fluid field and the moving solid boundaries with arbitrary

shapes. 

4 Conclusions

The main difficulties in handling the fluid-solid interaction problems lie in the

description of the solid  boundaries with large movement and the reflection of the

strong coupling of the system for the fluid and the discontinuous solids. In this paper,

a  resolved  model  named  as  the  RCFDEM  approach  is  proposed,  which  is  a

combination of the computational fluid dynamics and the discrete element method.

The above key challenges are properly solved using the immersed boundary method

(IBM)  and  the  iterative  partitioned  method. Considering  the  different  mechanical

properties, the Navier-Stokes equations were employed to model the fluid flow which

was discretized in the Eulerian framework, while the discrete element method using

the Lagrangian description was utilized to simulate the solids. To describe the moving

fluid-solid interfaces and to couple the methods in different frameworks, the IBM was

applied. With the application of the IBM, the boundary conditions on the immersed

boundary  points  should  be  satisfied  and  the  fluid-solid  interaction  force  can  be

calculated on this basis. To achieve a strong coupling of the fluid and the solids, the

coupled  system  was  solved  by  the  partitioned  method  in  an  iterative  way.  The

accuracy of the proposed method in managing the fluid-solid interaction problems
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was verified by four classic test cases, namely, flow past a static cylinder, the vortex-

induced  vibration  of  a  cylinder,  the  sedimentation  of  a  circular  particle  and  the

drafting-kissing-tumbling  phenomenon  of  two  particles.  Finally,  the  RCFDEM

method  was  employed  to  simulate  the  sedimentation  of  multiple  rigid  bodies.

Compared with the previous unresolved CFDEM methods which depend on empirical

equations, the flow field surrounding the solids is captured with high resolution and

the  true  bilateral  fluid-solid  interaction  can  be  precisely  considered  in  the  newly

proposed  resolved  method.  Moreover,  the  current  method  can  describe  the  solid

boundaries with large movement and arbitrary shapes. To ensure the high resolution

of the RCFDEM method and the strong coupling phenomenon between the fluid and

the  solids,  the  fluid  mesh around  the  solids  should  be  fine  and several  iterations

should be accomplished. Even though the computational cost increases for the sake of

accuracy, the parallel technique will be developed for the RCFDEM method in the

future to reduce the computational consumption.
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